Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency.

نویسندگان

  • W Chen
  • S Holm
چکیده

Frequency-dependent attenuation typically obeys an empirical power law with an exponent ranging from 0 to 2. The standard time-domain partial differential equation models can describe merely two extreme cases of frequency-independent and frequency-squared dependent attenuations. The otherwise nonzero and nonsquare frequency dependency occurring in many cases of practical interest is thus often called the anomalous attenuation. In this study, a linear integro-differential equation wave model was developed for the anomalous attenuation by using the space-fractional Laplacian operation, and the strategy is then extended to the nonlinear Burgers equation. A new definition of the fractional Laplacian is also introduced which naturally includes the boundary conditions and has inherent regularization to ease the hypersingularity in the conventional fractional Laplacian. Under the Szabo's smallness approximation, where attenuation is assumed to be much smaller than the wave number, the linear model is found consistent with arbitrary frequency power-law dependency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian.

The efficient simulation of wave propagation through lossy media in which the absorption follows a frequency power law has many important applications in biomedical ultrasonics. Previous wave equations which use time-domain fractional operators require the storage of the complete pressure field at previous time steps (such operators are convolution based). This makes them unsuitable for many th...

متن کامل

Stable Distribution and [0;2] Power Law Dependence of Acoustic Absorption on Frequency in Various Lossy Media

Absorption of acoustic wave propagation in a large variety of lossy media is characterized by an empirical power law function of frequency, 0j!j y . It has long been noted that the exponent y ranges from 0 to 2 for diverse media. Recently, the present author [J. Acoust. Soc. Am. 115 (2004) 1424] developed a fractional Laplacian wave equation to accurately model the power law dissipation, which ...

متن کامل

Lévy stable distribution and [0,2] power law dependence of acoustic absorption on frequency

The absorption of acoustic wave propagation in a broad variety of lossy media is characterized by an empirical power law function of frequency, y ω α0 . It has long been noted that exponent y ranges from 0 to 2 for diverse media. Recently, the present author developed a fractional Laplacian wave equation to accurately model the power law dissipation, which can be further reduced to the fraction...

متن کامل

1/f spectral trend and frequency power law of lossy media

The dissipation of acoustic wave propagation has long been found to obey an empirical power function of frequency, whose exponent parameter varies through different media. This note aims to unveil the inherent relationship between this dissipative frequency power law and 1/f spectral trend. Accordingly, the 1/f spectral trend can physically be interpreted via the media dissipation mechanism, so...

متن کامل

Galerkin Finite Element Approximations for Stochastic Space-Time Fractional Wave Equations

Abstract. The traditional wave equation models wave propagation in an ideal conducting medium. For characterizing the wave propagation in inhomogeneous media with frequency dependent power-law attenuation, the spacetime fractional wave equation appears; further incorporating the additive white Gaussian noise coming from many natural sources leads to the stochastic spacetime fractional wave equa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 115 4  شماره 

صفحات  -

تاریخ انتشار 2004